THE BEST TUBELESS TIRES

If you want the best tubeless tires for your road bike, there’s a lot to consider.

New and updated models are regularly being introduced. They have different aero, resistance, comfort, handling, grip, and installation performance properties in combination with different wheels. That forces you to consider what wheels you ride and the type of riding you do when deciding which tires to buy.

Traditional considerations like a tire’s puncture resistance, weight, wear, and price also plays into your decision-making.

And if that weren’t enough, updated views about which tire widths and inflation levels give you the best performance, recently introduced standards, and supply chain shortages on some of the tires are enough to make your head spin nearly as fast as your wheels do.

To deal with all of this, I periodically update (see date at the top of this post) the tires models and sizes I’ve reviewed,  what matters most in evaluating them, and how they compare to find the best tubeless tires for road cycling enthusiasts, those we can ride on every day for training and racing that have a puncture belt.


Related Reviews


What You Need To Know About Tubeless Tires

Click on any red statement below to go directly to that part of the post

Some things matter more than others in picking the right tubeless tires for your situation

Other things matter less – puncture resistance, weight, wear, and price

See our comparative ratings and tire reviews

Why some tires aren’t included in this review

What Matters Most

If you are a fast rider or racer and your tire pressure is set right, choosing between tubeless bike tires that give you the right aerodynamic relationship with your rims matters most and should be where you start. Once you’ve got that dialed in, you can pick between tires that provide the best road feel (comfort, handling, grip), the lowest tire loss rolling resistance, and that setup easiest on your wheels.

However, if you average less than 25mph/40kph on well-paved roads, ride at any speed on worn or rough pavement, or don’t care about riding fast above all else then the minimal absolute or relative amount of rim-tire aerodynamic drag in those riding conditions won’t make a difference to your speed or efficiency.

Other considerations including puncture resistance, weight, wear, and price matter relatively less. That’s because they aren’t as important as the four that matter most to your performance to outweigh the other criteria and, for most tires in this review, there’s little difference between them.

I’ll explain each of the criteria that matter most and matter less in the following sections.

For this review, I’ve compared what my research and testing shows are the best tubeless tires for everyday training and racing that have a puncture belt or equivalent. These are best suited for the demands and expectations of road cycling enthusiasts.

Using the criteria that matter most, I’ve chosen not to review or include in this latest update the tubeless tires with puncture belts whose tire loss rolling resistance isn’t in the top tier, are a bear to install, and have been discontinued. You can read more about which tires I didn’t include and why at the end of this post.

1. Aerodynamics of the rim-tire combination

My 2022 post on how wide tires and wide wheels can make you faster confirms that the fastest riders will benefit from the reduced aero drag that comes from using tires whose actual width once mounted and inflated measures less than the rim’s outside width at its widest point.

However, the research I did for that post led me to conclude that today’s wide wheels and wide tires have made the rule of 105 an anachronism. Airflow reattachment happens at rim-to-tire width ratios less than 105% on wide wheels and the penalty for having the tire wider than the rim is far less than it was on the narrow rims and skinny tires used to establish that “rule” some 20 years ago.

Mea culpa. I based many of my past tubeless tire aerodynamic ratings on this rule but will do so no longer.

Fortunately, many tubeless disc wheels introduced in the last couple of years have outside rim widths that are wider than the measured width of 28mm tires installed on them. There is also enough clearance on most modern road disc bikes for these wider tires.

The aero optimized tire size for many wheels remains 25mm. That’s the size that those you racing or riding closer to 25mph/40kph on well-paved roads should use.

If you ride closer to 20mph/32kph or on rough, worn, or chip-seal surface roads, wider tires inflated to lower pressures will probably gain you more watts by reducing the vibration loss portion of your rolling resistance more than the aero penalties you incur from a tire that exceeds the width of your rim.

I get into all of this in the post I linked you to just above.

For those of you who have wide rims now or are racing and riding fast, there are up to 3 watts of reduced aero drag to be had by having rims wider than your tires. That amount is a marginal gain worth having if you are trying to decide what tire to buy.

The challenge in getting this rim-tire combination right comes in that the actual sizes of tubeless road bike tires and wheels are both unique and change with each new model of either. For that reason, I’ve measured the actual rim and installed tire widths of current models of both to see which combinations have rims wider than the tires and by how much.

Rim-tire measurements

When I get a new wheelset for evaluation, soon after my childish excitement eases a bit, I weigh it and then measure several rim dimensions.

First, I’ll measure the depth of the front and rear rims. Most are the same but not always due to wheel design or manufacturing tolerances.

Next, I’ll record the inside rim width between the hooks or the full inside rim width if it is a hookless rim. I’ll then put my calipers across the rim’s outside width at the “brake track” or where one would be if it weren’t a disc brake wheel. If the rim has any variation in width such as a toroidal profile, I’ll also measure the rim’s maximum width.

Using a digital micrometer, I check these depths and widths at a half dozen places until I get a pretty good fix on the average of most of the measurements. While there are some outliers, typically there will be a variance of up to +/- 0.1mm across the places where I take these measurements.

Measuring the width of Tubeless Tires

For the latest update of this tubeless tire review, I’ve measured 25mm and 28mm tires on wheels whose inside and outside rim widths are representative of tubeless-ready road disc wheels you may own or can buy. Those rims range from 19mm inside, 26mm outside with a hooked rim to 25mm wide inside, 32+mm wide outside using a hookless rim.

Depending on the rim and tire size, I inflate the tires to 60psi/4.1bar and/or 80psi/5.5bar for these tire measurements on hooked rims. I’ve used these pressures in part for continuity with the database I’ve built to measure tire-rim combinations over the years. Luckily, those pressures continue to be in the range recommended to many of us cycling enthusiasts when we plug our weight, rim and tire sizes, and other factors into one of the tire pressure guides.

Now that there’s a newly created, not-to-exceed pressure ETRTO and ISO standard for tubeless tires on hookless rims (72.5psi/5bar), I’ve used 60psi and 70psi for those tire-rim combinations.

To give this some context, the recommended inflation pressure for a 150lb/68kg rider using a 25mm tire on a rim with a 21mm inside width is in the neighborhood of 70psi. A 180lb/82kg rider with the same tire and rim would want to increase that pressure to 80psi or so.

Using a 28mm tire on that same 21mm rim, the recommended pressure for the 150lb/68kg rider would be 60psi with 70psi suggested for the 180lb/82kg rider. With the 28mm tire on a hookless rim that’s 25mm wide inside, a pressure of about 50psi would be recommended for the lighter rider and 60psi for the heavier one.

If you are unsure what pressure is best for you, take a look at one of the guides and experiment with what they suggest. The easiest one, and frankly one I’ve found recommend a pressure closest to where I end up after my experiments lowering the pressure further is available from ENVE (which sells both wheels and tires). SRAM (parent of wheelset and tire seller Zipp) and Silca (seller of tire pumps) also have tire pressure calculators you can use.

I discuss the differences between these three and how to come up with the right pressure for you in the post I linked to at the beginning of this section.

Measuring tubeless tire widths

Wheels and tires lined up for the March 2022 measurements

A couple more things to finish off this preamble. Since the front wheel affects your aero performance far more than the rear, I’ve done all the tire rim-tire combinations on the front wheel. If you can’t decide between prioritizing aero performance and comfort, you have my permission to put a wider tire on the rear wheel. It won’t matter that much to your aero performance unless you are doing a 40K time trial type of event.

And to reiterate what I wrote above, if you are a slower rider or even a fast one riding rough roads, you’ll likely be faster riding a properly inflated tire that’s wider than the rim.

I measure new or minimally used tires (typically with under 250 miles) and, as with the rim measurements, use the calipers to get readings at a half dozen places across the widest part of each mounted and inflated tire.

Unless you put on new tires every 1000 km (620 miles), you need to account for the reality that tires will stretch and widen over time. How much? While I’ve measured mostly new tires, Jarno Bierman at Bicycle Rolling Resistance has done endurance testing that tracks changes in the width, tread-thickness, and tire loss rolling resistance of a 28C Continental Grand Prix 5000 (non-tubeless) clincher at 1000km (620 miles) intervals.

He’s found that the tire widened by 0.5mm at his first 1000km checkpoint but only another 0.2mm all the way up to 5000km (3100 miles).

Most of us enthusiasts by definition ride 5000km (3100 miles) to 10,000 km (6200 miles) a year and might go through one or two pairs of tires a season. Based on what Jarno found in his endurance testing, that means our tires will likely be another 0.5mm or wider during most of the time we ride them, ie., after about 1000km or 620 miles.

In the chart below, you’ll see how much wider or narrower the rim is than the tire for each combination. When the rim is wider and should continue to be over the life of the tire, the cells showing the measurements will be shaded green. If the rim is initially wider but tire wear will cause the tire to expand beyond the width of the rim, they get a yellow shading. When the rim is narrower than the tire to start with, the cells are shaded pink (but only because you couldn’t see the numbers if I used red).

While my measurements were limited to the wheelsets you see in the charts below, I’ve hopefully given you a wide enough range of wheels with different inside and outside widths that you can find one with similar measurements to yours.

Results and key take-aways

Click the chart to enlarge it.

Tubeless Tire Rim-Tire width differences

Here are my key conclusions from these rim-tire measurements:

* The actual width of the same size tires from different brands can measure very differently, especially for narrower tires on narrower rims at higher pressure but also for wider tires on wider rims at lower pressures. For example:

  • 25mm size tires set up on the 19.0mm inside, 26.3mm outside rim at 80psi are as much as 1.9mm different in actual width (rim wider than tire by 1.7mm, 0.9mm, 0.3mm, 0.1mm, -0.2mm)
  • 28mm size tires set up on the 25.2mm inside, 31.5mm outside rim at 60psi are as much as 0.9mm different in actual width (rim wider than tire by 2.1mm, 2.0mm, 1.7mm, 1.2mm)

* The difference in actual width of 25mm and 28mm size tires vary from one brand/model to the next. For example:

  • The increased actual width between 25mm and 28mm size tires of one brand/model averages 2.6mm installed at the same pressure across 3 wheels while only 1.2mm for two other brands/models

* For rims with an outside width of 26mm, you need to be very selective to find a 25mm tire that will measure less than the width of the rim once installed

* For rims with roughly the same outside width, those with a narrower inside width will make the actual width of 28mm tires narrower as well.

Comparing the measurements of different brands/models across all of the rims, I also draw the following conclusions:

* Among 25mm tires, the Continental Grand Prix 5000 S TR and Veloflex Corsa TLR tires measure notably narrower than the Michelin Power Road TLR, Schwalbe Pro One TLE, and Specialized S-Works Turbo Rapid Air, which measure about the same.

* Among 28mm tires, the Continental, Schwalbe, and Specialized measure about the same and notably narrower than the Michelin.

Join KNOW'S CLUB - GET MORE VALUE FROM IN THE KNOW CYCLING

BREAKAWAY membership – Be the first to see reviews

  • Get 7-day advance notice of newly published and updated reviews
  • $29/year

PACESETTER membership – Help choose what we review

  • Nominate and vote on wheelsets and other gear for review 4x/year
  • Includes all BREAKAWAY member benefits
  • $59/year

LEADER membership – Get personalized product recommendations

  • Get Steve’s recommendation on wheelsets and gear for your situation
  • Includes all PACESETTER AND BREAKAWAY member benefits
  • $199/year

2. Road feel

When I describe a tire’s road feel, I’m talking about how comfortable it is, how well it handles in corners or maneuvers when you’re changing direction, and how much grip it provides in those handling maneuvers and when accelerating or just speeding along straight down the road.

The better the road feel, the more precise you’ll be taking those corners and doing those maneuvers, or generally accelerating on your bike. While it’s hard to measure, the added confidence that comes from tires with a superior road feel will allow you to ride more aggressively without taking on more risk. That will make you faster.

Tire size, compound, casing, and tread all contribute to the road feel as does the inflation pressure and wheel size in combination with the tire.

We’ve all read how a wider tire, inflated to the same pressure, gives you a wider contact patch between the tire and road surface. A wider contact patch can give you better handling. A narrower tire at the same tire pressure as the wider one gives you the same tire patch area but is narrower, running more along the length than the width of the tire and therefore doesn’t handle as well.

However, a wider tire at the same air pressure has a greater volume of air in it. That gives you less suspension and therefore less comfort.

One of the major reasons people use wider tires is to improve comfort. So you lower the air pressure to reduce the air volume and improve the suspension and comfort in a wider tire. (Throw the contact patch argument out the window.)

With a tubeless tire that’s filled with sealant, you can keep lowering it and get more suspension without concern for a pinch flat the way you would with a tube in your tire at that lower pressure. More suspension, especially on a rougher road can also give you better handling (and lower vibration losses) until you hit a pressure where the handling feels imprecise or mushy when cornering or accelerating.

Tire compound and casing also play a role in how the road feel of tires differ at the same width and inflation pressure. You can often feel the difference with a tire that has a more supple casing or grippier compound. These contributions to better road feel give you the ability and confidence to ride faster.

Most road tires are slick down the center with a limited amount of tread on the sides. It’s hard to know if the tread on a road tire actually improves acceleration and handling the way it does on a gravel or mountain bike tire.

My fellow tester Miles and other serious road racers believe the tread adds grip when they’re ripping through corners. Miles doesn’t like to ride tires without tread. Real or imagined, it adds to his confidence and makes him faster.

Tire companies say the tread is there to channel moisture on wet roads and trip the air to reduce aerodynamic drag. Not wanting to mess with Mother Nature or Father Grime, I religiously mount tires in the direction indicated in hopes that it will help me ride faster or at least, not work against me should I find myself riding out on a wet, oily road.

Cynics, or perhaps those who know more about tire marketing than I do, say the tread is purely cosmetic. Per this reasoning, road bike tires deflect and rebound as their primary way to give you grip and traction, not from a small amount of tread.

But, as this perspective goes, since almost every vehicle tire has tread, consumers expect it and road bike tires sell better with it.

Too many of us roadies inflate our wider, tubeless tires too high even though the dial shows a pressure far lower than where we have normally set our narrower, tubed clinchers all these years.

Getting your tire pressure set right is key to getting the best road feel you can with whatever tires you’re riding and reducing vibration loss rolling resistance on all but the smoothest road surfaces. Use one of the tire pressure guides I linked you to above and experiment with lowering your pressure further until you get to where the handling starts to feel imprecise or mushy.

My fellow testers Nate, Miles, and I start with these pressure guides to find a pressure that gives us the best road feel for the tires we are testing.

3. Tire loss rolling resistance

Rolling resistance has become a popular decision criterion for many riders these days. With several labs and magazines publishing results, it gets a lot of attention and is more easily quantified than aero performance or road feel.

However, the quantified results – usually stated in watts of rolling resistance – depend on the specific protocols used by the testers. Those results will vary with the tire and rim width, inflation pressure, drum surface, drum speed, weight applied, and other test controls.

And what these testers are measuring is the rolling resistance from the losses in the tire compound and casing. What they don’t measure is the rolling resistance that comes from vibration losses that happen when your tires (and wheels, bike, and body) come up off the road surface and land back on it. That happens over and over and over during the course of a ride, especially on worn and rougher road surfaces.

Tire losses and vibration losses together add to your rolling resistance. And the rolling resistance that comes from vibration losses can exceed that from tire losses when your tire is inflated beyond a certain “breakpoint.” I go into all of this in more detail in my post about how wide tires and wide wheels can make you faster.

As it relates to choosing between tubeless tires, here’s the really important bit: With a few exceptions, the rolling resistance results of the best handful of tires made for a similar riding purpose like those we roadies buy and that I’ve evaluated for this review (everyday tires with a puncture belt) are not more than a couple of watts different at the speeds and pressures we ride tubeless bike tires under the testing protocols at each of different testing labs I reviewed.

Further, because the testing protocols differ slightly as do the production runs that the tested tires come from, there may be almost no real differences between the best tires that would make us choose one over another based on the published tire loss rolling resistance numbers.

For example,

  • Bicycle Rolling Resistance found the Continental Grand Prix 5000 TL and Continental Grand Prix 5000 S TR tire that replaces it have tire losses within the margin of error (0.2 watts) but have less tire loss (2.5 watts on average at 80 psi/5.5 bar) than the Schwalbe Pro One TLE.
  • TOUR Magazin’s tests found the S TR has a tire loss 1 watt more than the TL in their smooth surface test but 3 watts more in their rough surface one.
  • Renn-Rad Magazine’s tests show the Schwalbe Pro One TLE and Continental Grand Prix 5000 TL have similar tire losses (0.2 watts difference).

If all of this suggests to you that it’s a mistake to choose between the top tubeless training or racing tires solely based on their watts of tire loss or relative ranking in these tests, then that’s the conclusion I’ve reached as well. You can pick any from the top group of tire loss performers and be confident that there won’t be a tire loss difference that will affect your speed or time.

And that’s the great benefit that BRR, TOUR, Renn-Rad, and other independent testers provide us as cycling enthusiasts. They allow us to see which small group of tires are among the “best” or in the “top” tier rather than which individual one to buy based on an absolute best tire loss rolling resistance number.

Note also that if you are a partially converted tubeless tire rider, meaning you use a tube instead of sealant inside your tubeless tires, make sure to use a latex tube if rolling resistance matters to you. Using a butyl tube will add 2-3 watts of tire losses to your rolling resistance per BRR’s testing. That will essentially knock your tire out of the “best” tier of tubeless tires with puncture belts.

However, using a latex or butyl tube may limit your ability to reduce your vibration losses without increasing the risk of getting pinch flats more common at lower pressures.

4. Installation ease

For those of you who are tubeless converts or those who remain interested but have held off because of some of the horror stories of installation difficulties, I can tell you that a lot has changed for the better in just the last few years.

Newer, wider, deeper road tubeless wheelsets have a center channel in the rim bed that is supposed to be 2.6-3.4mm deep for hooked rims and 2.9-3.5mm for hookless ones per the 2020 ETRTO standard.

Some also have “bead locks” or shallower, narrower channels running inside the rim walls where the tire beads sit after the tire is installed and inflated. Those without locks have the horizontal rim bed meet the vertical rim wall with or without hooks.

Compare the tubeless rim bed on the left with the classic clincher one on the right.

Tubeless Bike Tires

The channel in the tubeless rim is the key to getting your tires on. At that spot in your rim bed, while the wheel’s diameter is reduced a few millimeters, the circumference is reduced over 3x (or by Pi) that amount. That makes all the difference in getting tubeless tires on your wheels.

Without using the channel, you probably won’t get your tires on. You’ll blister up your thumbs, abuse the rim beds and tape using tire levers, and likely swear till you are blue in the face.

So, use the channel and make it easy on yourself.

How? As you put the first sections of the first bead of the tire over the edge of your rim, put the bead into the rim channel and then mount the rest of that first bead into the channel as you go all the way around.

Keeping that first bead in the channel, push the second bead over the rim edge and into the same channel as you install the rest of the second bead.

If you are having difficulty with the second bead, check to make sure that all sections of both beads you already have over the rim edges are still in the channel.

You also want to put the sections of each bead near the valve on last since the channel is blocked by the valve and the tire will sit higher there than if it were in the channel.

IRC created this graphic to show the steps.

How to install tubeless road tires

Here are a couple of videos that show some best practices for how to install modern tubeless road tires on tubeless-ready rims. They take slightly different approaches, but both work.

This one from ENVE starts with a tubeless road rim and shows you how to tape it and then put on the tire, inflate and seat it before injecting sealant. That’s the approach I follow.

This next one from GCN starts with a pre-taped tubeless road rim and shows how to use sealant before inflating to help you seat your tire bead. This approach works too if you don’t have a valve with a removable core through which you can add the sealant.

We’re seeing more wheels being introduced with hookless rims. They are less expensive to make and improve aero performance slightly by smoothing the tire-rim interface. At 50 to 70psi pressures typical of what you’d use for wheels with 23mm and 25mm inside widths and with 28mm tires, the beads hold the tires in place without concern for them coming off the rim.

ETRTO and ISO standards established in 2020 define the rim diameter and bead lock tolerances for hooked and hookless rims to +/- 0.05mm. They also use a more modern rim width for tire makers to use in labeling the size of their tires. This means that tires should fit more interchangeably with rims and measure truer to size once installed and inflated.

Unfortunately, we’re not there yet. While I hope installation becomes simpler and more uniform as the next round of tubeless wheels and tires are introduced, the current reality is that some tires mount, inflate, seal, and can be removed more easily on some rims than others. This is important not only when you put new tires on but even more so if you have to install a tube on the road to deal with a major puncture that the sealant doesn’t fill.

For my tire ratings, I’ve noted which tires are easier or harder to get on and off the range of wheels we’ve tested.

Hookless Compatibility

ENVE and Zipp, two leading wheelset makers have taken different approaches to advising cyclists on the compatibility of tubeless tires with their hookless rims.

ENVE tests each tire model and size on its wheels that have been submitted to them by tire companies. Tire models and sizes are listed as Approved/Recommended or Not Approved/Incompatible. Tires that are not on either list have not been submitted for testing and ENVE suggests you “contact the tire manufacturer and ask them if their tires are approved.”

Zipp lists tire models and sizes that tire companies have told them are compatible with Zipp’s hookless rims. Zipp doesn’t do any testing to confirm compatibility. Companies that have not communicated the compatibility of their tires are listed with a message to “check with brand for specifics.”

In the chart under section 1. Aerodynamics, I’ve noted where tires are not compatible with Zipp and ENVE hookless wheels. I say more when the same tires come out with different compatibility listings in the tire reviews below.

The ETRTO and ISO standard for tubeless tires on hookless or “straight side” rims states the maximum pressure at which tires can be safely inflated is 5 bars (72.5 psi). You shouldn’t inflate it higher for safety reasons and even a 250lb/115kg shouldn’t need to for performance reasons.

What Matters Less

5. Puncture resistance

Of course, one of the main reasons to go tubeless is to protect yourself against punctures. When you puncture a tubeless road tire with sealant, the best measure is how quickly and well the sealant fills it.

This is puncture resilience, the ability of your tire to recover from a puncture.

On the other hand, puncture resistance, the ability of a tire to initially resist a puncture, is important if you have no recourse other than to get off your bike and replace your tube.

Puncture resistance is most relevant to the tube and clincher tire world but matters much less in the tubeless one. Not only because of the role of tubeless sealant in filling the puncture but because tests run by BRR, Tour, and Wheel Energy show little difference in puncture resistance between most everyday tubeless road tires with puncture belts.

By my lights, puncture resistance testing data essentially evaluates the strength of your puncture belt and the thickness of your side walls. It’s at best a poor surrogate measure for the puncture resilience of a sealant-filled tubeless tire, the true indicator of whether you’ll be able to continue riding when your tire punctures out on the road.

A test that measured whether and how fast a tubeless bike tire resealed punctures of different sizes in the bottom and side of the tire spinning at cycling speeds would be more useful in choosing between them than the small differences in puncture resistance. Another test that evaluated the relative effectiveness of different sealants would be a bonus.

I don’t know how to do those tests but I’m sure or at least hope that some smart tire engineers will come up with them soon.

In the meantime, we default to puncture resistance data.

The most important thing you can do to overcome a puncture is to make sure you’ve got the right amount of sealant in your tires. I find 30 to 45ml (or about 1 to 1.5 ounces) is the right amount to initially get your tires sealed and protected against normal punctures. However, because the sealant dries out over time, you’ll want to make sure to add more every 3-4 months to keep it at that level.

Sealant in tubeless road tires

Make sure to keep enough sealant (30ml) in your tubeless road tires for them to quickly seal after a puncture.

Of course, there are times when a puncture is so large that sealant won’t do the job. Usually, that only happens with a good-sized gash in the side or bottom of your tire or when you are racing on a tire with no puncture belt. For those situations, carrying a tube to inflate the tire and using a food wrapper or paper currency to block the tube from going through the gash is a good backup plan.

Using a set of all-season tubeless road or cross tires for commuting or on roads full of puncture-rich obstacles will give you better puncture resistance than everyday tires with puncture belts but will make for considerably poorer tire loss rolling resistance and road feel.

6. Weight

One of the arguments for tubeless road tires is that they weigh less than clinchers. This isn’t the case, at least not comparing different tubeless and sealant vs. tubed clincher setups.

The actual weight of the 25mm tires in this review (one is actually labeled 26mm) range from 233 to 267 grams and average 253 grams. Add to that average another 30 grams for an ounce (30ml) of sealant and another 7 grams for the tubeless valve. That adds up to 290 grams.

As a reference, a top everyday clincher tire like the 25mm Continental Grand Prix 5000 weighs 220 grams. With a good butyl tube like the Continental Race 28 Light, add about 75 grams. Total 295 grams. No diff.

If you replace the butyl tube with a super lightweight, 23-gram Tubolito S-Tubo Road tube, then the clincher is down to 243 grams. But then you’re giving up nearly a watt of tire loss rolling resistance to the 80 gram Vittoria Latex 25/28 inner tube.

Are you planning on rolling 28mm tires for increased comfort and reduced vibration loss rolling resistance? Of the 28mm tires we’ve tested, they range from 276 to 305 grams and average 294 grams. Fill them with 1.5 ounces (45 grams) of sealant for the wider tire and you’re at 346 grams for the tubeless (including the 7-gram valve).

Compare that with the 28mm wide Conti GP 5K clincher at 250 grams and you’re at 325 grams with the butyl tube and 273 with the Tubolito latex tube. But my guess is you aren’t going to run a latex tube if you are going with the wider, less aero tire.

Comparing tubeless vs. tubed clinchers or different models of the best tubeless tires at either 25mm or 28mm wide is a fun exercise but comes up with very small actual differences.

While it might weigh on the minds of weight weenies, you’d be hard-pressed to tell these differences out on the road. That’s why I put weight in the what matters less bucket of criteria.

7. Wear

The good news about riding different wheels and tires all the time is that I and my fellow testers get to try out and evaluate a lot of new gear and report that out to you. The bad news is that we really don’t get to ride any one set of tires for more than 1,000 miles and spend a lot of time installing and removing them to make way to test others.

Other than a tire that wears quickly or cuts easily within our testing period, I can’t really offer my own opinion on tire wear or whether one model lasts 2500 miles while another goes 4000 miles. Of course, we all ride on different roads too, some of which are harder on tires so wear is a situational thing anyway.

I and my fellow testers can tell which tires wear quickly within the first 1,000 miles and can project wear based on what we see during this interval.

While most of us roadies are frugal, I will pick a better-performing tire over a long-lasting one every day of the week. Spending $25 more per tire to get better performance or spending an extra $50 or so to replace worn tires with better ones even twice as often isn’t going to be a budget-buster for most of us.

So wear and price are two criteria I believe should matter less.

8. Price

Most better-performing tubeless road tires with puncture belts are priced between US$60-80/£50-60/€65-85 per tire. You can see the market prices for each of the tires I’ve reviewed in the table below.

One or two may sell for as much as $20/£15/€10 more or less depending on supply and demand or individual store discounting practices. But compared to what we spend on our bikes, gear, apparel, food, event fees, etc., tires are a minor cost for such a big contributor to our performance and enjoyment on the bike.

With that in mind, I suggest you put the price of tubeless road tires at the bottom of the list of decision-making criteria.


Find what you’re looking for at In The Know Cycling’s Know’s Shop

    • Compare prices on in-stock cycling gear at 15 of my top-ranked stores
    • Choose from over 75,000 bikes, wheels, components, clothing, electronics, and other kit
    • Save money and time while supporting this site when you buy at the store after clicking on a link*

Check out Know’s Shop

*While there’s no added cost to you, some stores pay commissions that support our product review and site expenses.


Reviews and Recommendations of Tubeless Bike Tires

The chart below shows the relative ratings of tubeless tires we’ve evaluated using the criteria I’ve written about above for what matters most and what matters less.

A “o” rating means that the tire performed similarly to the majority of those we evaluated. Those that performed better get a “+” rating; those that perform worse get a “-“.

In the reviews that follow, I say more about why each tire rates where it does.

Tubeless Tire Ratings


In The Know Cycling is ad-free, subscription-free, and reader-supported. If you want to help keep it rolling without any added cost to you, buy your gear and kit after clicking the store links on the site. When you do, we may earn an affiliate commission that will help me cover the expenses to create and publish our independent, comprehensive and comparative reviews. Thank you, Steve. Learn more.

Continental Grand Prix 5000 S TR

Continental Grand Prix 5000 S TR

Market price US$100, £75, €90. Many sizes are hard to find but the following stores have some in stock: Competitive Cyclist, Chain Reaction Cycles, Merlin, and other recommended stores at Know’s Shop.

The Continental Grand Prix 5000 S TR replaced the very popular 5000 TL. The company set high expectations for the S TR, most notably its claims of reduced rolling resistance, hookless compatibility, and easier installation compared to the TL.

While introduced in late Fall 2021, popular sizes have been hard to find and whatever sizes are available have been selling at the top of the range for training and racing tubeless tires with a puncture belt tested for this comparative review.

From the time I and my fellow In The Know Cycling testers have spent riding the 5000 S TR done and the tests conducted by others I trust, it’s clear that Continental has one of the best tubeless tires available. That’s why I’ve included it in this comparative review.

But, they’ve overpromised and underdelivered on claims that would make you believe that this tire stands head and shoulders above others. And, while I normally don’t spend any time regurgitating or giving a rat’s @ss about a supplier’s product claims in my reviews, the overblown product claims for this tire forces me to call out the BS from the reality.

That along with the limited availability and high price makes it hard to review this tire principally based on its performance, something I prefer to do.

On the plus side, the Grand Prix 5000 S TR in the right size should make for a low aero drag combination when installed on the range of modern road disc rims. The 25mm S TR sets up narrower on the wheels I tested whose outside rim width is between 26mm and 28mm than any of the others on review. And the 28mm size S TR is nearly as narrow (and sufficiently aero) as the best of the other tubeless tires on rims that measure 31mm and wider.

As with second-generation tubeless tires created by other companies in the years that ETRTO was overhauling its tire size recommendations for wider wheels, the S TR is a narrower tire than the TL. The 25m S TR measures nearly the same as the 23mm TL.

Getting the S TR tire on rims and inflating them is the easiest of any I’ve mounted in 5 years of installing tubeless tires including the 50+ installations I did across 8 wheelsets from 5 leading brands for this updated review. While it takes two to tango – even tires made of supple materials with malleable beads and manufactured within tolerance need rims with center channels and bead seats that mate well with tires – these new Conti tubeless tires are the belle of the ball.

If you have even a minimum amount of experience installing tubeless tires, you’ll find that few of the best these days require levers to get them on the newer designs of road disc wheels that meet the ETRTO standard. Yet, the S TR goes on with noticeably less effort than most and inflated on nearly every wheelset I tested with a regular floor pump.

This is a HUGE improvement over the experience installing the TL, a tire I couldn’t get on many rims. It caused me to recommend against buying the TL except for the most skilled installers or those willing to call for a ride if they got a flat on the open road.

But, it may be that in overperforming the installation experience they may have created a tire that underperforms the claim they’ve made to be hookless compatible.

Yes, it mounts on hookless rims. And yes, Continental has approved the Grand Prix 5000 S TR for hookless rims and includes a chart on its site and packaging (though not on the tire) that shows the max inflation pressure of 5 bar or 72.5 psi per new ETRTO and ISO standard. Based on this, Zipp shows the 28mm and larger sized S TR tires are supplier approved (by Continental) for Zipp’s hookless rims. (The 25mm is not supplier approved.)

But what if you mistakenly inflate and ride the tire above the max level or the pressure increases beyond that level when your bike is stored in or on your car on a hot summer day?

Continental has an answer for that. They point to an industry “blow-off” guideline of 110% (5.5 bar/80psi) and their own internal testing of 130% (6.5bar/94psi).

Cycling Weekly reviewer Michelle Arthurs-Brennan explains all of this and did her own testing of a 28mm S TR on Zipp 303 S (23mm inside width) and 353 NSW (25mm inside width) wheels. Inflated to 100psi/6.9bar or 136%, the tires blew off after about 10 mins.

The bead material Conti uses to make the tire easier to install than any other also stretched sooner than most when inflated well beyond the max standard pressure in Michelle’s tests.

Sooner than most? ENVE tests all the tubeless tires submitted to them by suppliers at 150% of the max recommended pressure before saying it’s compatible with their hookless rims. ENVE has approved the S TR for their hookless rim wheels.

So yeah, it works with hookless rims. But don’t overinflate it and I’d suggest you let half the air out before you leave it in your car or prop it up on the roof on a hot day.

Continental’s most jaw-dropping claim is that the Grand Prix 5000 S TR is 20% faster than the TL. While they don’t define what they mean by faster, what makes it possible, or under what conditions it’s faster, I’ll assume they’re talking about the extra speed that might come from a combination of less aero drag from being narrower, lower tire loss rolling resistance, and lighter weight than the TL.

Even with the S TR setting up narrower than the TL on the same rim and both being narrower on the rim wouldn’t come anywhere near a 5% reduction in aero drag, let alone anything approaching 20%.

And while the 25mm S TR is 50 grams (or 17%) lighter than the TL per my measurements, independent testers BRR and TOUR (subscription required) found that the S TR has a marginally higher tire loss rolling resistance than the TL.

It’s still a very low tire loss rolling resistance number, one that only the Schwalbe Pro One TLE matches per Renn-Rad (subscription required) tests. But once again, they overpromised on something they really didn’t need to.

With its 50-gram weight loss, the S TR is about 20 grams lighter than most other tubeless tires with a puncture belt. I don’t know that anyone was complaining about the weight of the TL but I don’t live in the weight weenie world so I may have missed that.

As BRR explains, Conti made changes in the tire casing and construction. It no longer has a butyl liner that earlier generation tubeless tires used to employ to run the tire airtight without needing a sealant.

Yet, in the same way that losing weight to improve your watts/kg can also reduce your power, the changes that led to S TR’s weight loss may also be the reason why it now has been shown in tests by BRR to have less puncture resistance than the TL. While it retains the Vectran puncture belt, BRR rates its puncture resistance scores closer to those without puncture belts like the Vittoria Corsa Speed G+ 2.0 than the ones that have those belts and reviewed here.

My advice is to make sure you keep the sealant topped off.

This Grand Prix 5000 S TR’s road feel – its comfort, handling, grip – is quite good. While not quite to the outstanding level of the Specialized S-Works Turbo RapidAir or Veloflex Corsa Race TLR reviewed below, it’s very good and on par with what we enjoyed with the TL. This S TR’s handling through corners is worthy of your total trust. Miles and I pushed it hard in different situations, Miles in crits and me in fast, sweeping downhill turns. We both came away very confident that the S TR was riding shotgun with us, able to cover our flanks (and keep us upright).

There’s no slip in the grip when you accelerate either.

While the S TR is sufficiently comfortable, it’s not quite to the level of the plush Spech or the cotton-sensitive Veloflex. And like the TL and other Contis that use the same Black Chili compound, the S TR is noisier than most tires including the others in this comparative review.

Bottom line, the Continental Grand Prix 5000 S TR scores slightly better on more of the performance measures I believe matter most while getting dinged on a couple of criteria that matter less.

While it may be a while before the tires are widely available. their price will likely come down once they do based on what we’ve seen with other Conti Grand Prix tires that have come to market before these.

Michelin Power Road TLR

Market price US$57, £53, €63. Available at the best prices through these links to Amazon, Tweeks, and other recommended stores at Know’s Shop.

While an everyday tubeless tire, the Michelin Power Road TLR is the only one in this comparative review without a puncture belt. Instead, Michelin added a fourth 120TPI (thread per inch) layer to the casing in place of the belt and a bead-to-bead liner to create puncture resistance similar to tires with a belt. BRR’s puncture resistance tests confirmed the result, its scores coming in very similar and in some cases better than other tires in this comparative review.

Independent tests of the Power Road TLR’s tire loss rolling resistance also put it in the top tier with the very best everyday tubeless tires that have puncture belts.

Remember what I wrote above about puncture resistance is one of the things that “matter less” and rolling resistance is less important than some of the other things that “matter more?”

Well, I found both to be true in testing these Michelin tires.

While sufficiently aero in the right combinations, the Power Road TLR is generally wider than the other tires reviewed here and is wider than the rims in more combinations than any of the others. Specifically, if you are planning on using a 25mm tire, make sure your rim measures at least 28mm wide outside. With the 28mm size Power Road TLR, you’ll want rims that are at least 31mm wide outside to minimize your aero drag.

When it comes to installation, they go on and off most rims easily but I usually had to use a compressor to get them inflated. And they don’t hold air the way a tubeless tire with a butyl liner like these should. With my normal 1 oz/30ml of sealant squeezed in through the open valve stem, they would lose 20-30 psi overnight and, worse, 10-20psi over a several-hour ride.

Retaping the wheels didn’t do the trick but doubling the amount I normally put in each tire did. To be sure it wasn’t the wheel or my tape jobs, I subsequently mounted another TLR tire on the same rims with 1 oz of sealant and only had routine air loss.

It’s clearly not an issue as long as you remember to double your normal sealant volume. And while I’ve said weight is also something that matters relatively less, you essentially add 30g to the weight of each tire by doubling the amount of sealant based merely on tire construction. That’s kind of like an “own goal” though you’re the only one that will know you’ve scored on yourself.

On the road, they feel quite grippy – actually more like “tacky”. They ride quite comfortably perhaps because they are a bit wider than most tires of the same label size. Overall, the Power Road TLRs provide a good ride but not to the level of the best.

ENVE has approved the 28mm size Power Road TLR for compatibility with their A/R hookless wheels. Michelin hasn’t told Zipp whether the tire is compatible with their hookless wheels however other 28mm tires are both compatible and more aero than the Power Road TLR.

The Power Road TLR is currently priced below most of the others in this review and is available. If you prefer to use a tube and aren’t rolling fast enough to where aero performance matters to you, the TLR offers you a good option.

Schwalbe Pro One TLE

Schwalbe Pro One TLE

Market price US$78, £55, €67. Available at the best prices through these links to Merlin, Wiggle, Chain Reaction Cyclesand other recommended stores at Know’s Shop.

Schwalbe introduced the successor to the popular Pro One tubeless tire around the same time the ETRTO standards body had made clear their intention for tire labeled sizes to measure closer to installed sizes on wider, modern wheels.

The updated Pro One is called the Pro One TLE or Pro One EVO Tubeless and has a bit of orange in the logo as you can see in the photo above. The earlier Pro One has a completely white logo.

This latest model is rumored to be made in the same molds used for the prior one except with labels a size up – the new 25mm is the old 23mm, the new 28mm is the old 25mm, etc. My measurements suggest that regardless of what molds they are using, they have effectively gotten their stated tire sizes close to actual tire widths after mounting and inflating them on rims that measure 19mm through and 25mm inside.

The result is good aero performance for rim-tire combinations with the 25mm Pro One TLE on rims that measure at least 27mm wide outside and with the 28mm Pro One TLE on 30.5mm and wider rims.

The 25mm TLE passed ENVE’s testing and is approved for their Foundation series hookless rims while the 28mm TLE is a go for ENVE’s AR and Zipp’s hookless wheels.

Out on the road, this Schwalbe provides only average comfort, a characteristic that was never a strength of the original Pro One. But because the current model provides good grip and handling, the overall road feel falls just short of the best.

After reviewing independent tire loss rolling resistance tests, it looks to me that the Schwalbe Pro One TLE is on par with the top-ranked Continental Grand Prix 5000 S TR. BRR has the S TR ahead of the Schwalbe but Renn Rad has them a bike throw better than the TL which both BRR and TOUR rated better than the S TR. This is noise-level difference at best.

The suffix TLE stands for “tubeless easy” and I interpret the EVO designation to mean this is a tubeless tire that has evolved. Regardless, installation isn’t the easiest and doesn’t demonstrate the level of advancement most of us garage mechanics will love.

While I could get them on most rims with my average size hands and strength, I had to use a lever with about 1/3rd of those I mounted these on to get the last section of the second tire bead over the rim edge.

Clearly it’s a stiff bead and one that almost always required a compressor to get fully seated in the rim. Since the tire bead is strong enough to hold air without being fully seated, you need to look at the rim all the way around both sides to make sure there aren’t sections of the tire that are still hiding below the rim edge.

That and their tendency, like their predecessors to wear more quickly than tires made by other brands in our testing make the Schwalbe Pro One TLE feel more like a fast-rolling, great handling race speed tire than one I would confidently pick for lots of training and long endurance rides at a slower pace on a less demanding course.

Specialized S-Works Turbo RapidAir

Specialized S-Works Turbo RapidAir

Market price USD$80, £59, €85. Available at the best prices through these links to top-ranked store Competitive Cyclist in the US/CA and at recommended store Tredz for UK/EU residents where you can receive a 10% discount exclusively for In The Know Cycling readers with code ITKTDZ10. You can also find them at other stores I recommend in my Know’s Shop.

The Specialized S-Works Turbo RapidAir tubeless tires are solid performers across all criteria without a discernable weakness.

Their road feel is among the best of any tires we’ve ridden, both supremely comfortable and grippy on straights and precise in corners. Riding the S-Works Turbo RapidAir gives your great confidence in any road handling situation. If that’s what’s most important to you, these are the tires you want wrapping your wheels.

Specialized makes a 26mm labeled version of the Turbo RapidAir rather than the 25mm size sold by most tubeless tire brands. That said, my measurements show they size similarly in rim-tire combinations to the 25mm Michelin Power Road TLR and Schwalbe Pro One TLE and will minimize aero drag in combination with rims whose outside width is 28mm or greater.

The 28mm model of the Turbo RapidAir also measures similarly to the 28mm sizes of those tires and the Continental 5000 S TR. Rims whose outside width runs 30.5mm or wider will be at least 1mm wider than the Turbo RapidAir and be marginally better than the other tires in this review up through the 32mm wide wheels we tested them on.

This Specialized tire loss rolling resistance is in the group of chasers just a couple of watts off of the pace of the Continental Grand Prix 5000 S TR and Schwalbe Pro One TLE. But unless you’re racing at mid-20mph/high 30kph speeds, this amount of rolling resistance difference is less important than the Turbo RapidAir’s road feel.

While I used to struggle to get Turbo RapidAir tires off of earlier generation road disc wheels, that’s not been an issue with the range of wheels I mounted them on for the latest update of this comparative review, ones all made to the new ETRTO rim diameter standard. They go on without levers on almost every wheelset and, like all but the new Continental Grand Prix 5000 S TR, are usually best seated with a compressor. They ping into place fully and without a struggle

There’s no drama between these Specialized tires and hookless rims made by ENVE (26mm and 28mm size tires) and Zipp (28mm) for which they are compatible.

The Turbo RapidAir tires are a bit pricey, typically at the premium end of the range when there’s an ample supply of tires and most of the other options are selling below their full retail prices. Should those days ever return, getting hooked on the road feel of these tires will likely be a security blanket you’re unwilling to go without no matter the added cost.

Compared to all the other stuff we spend money on to feed our cycling habit, I’d happily pay extra for all of what the Turbo RapidAir offers.

Veloflex Corsa Race TLR

Veloflex Corsa Race TLR

Market price US$58, £49, €53. Available at the best prices through these links to Merlin and Veloflex.

To take a line from Monty Python’s Flying Circus, “And now for something completely different.”

While maybe not completely different, the Veloflex Corsa Race TLR tire is different enough from the rest of the field of tubeless tires I’ve tested to stand out. At the same time, the characteristics it shares with some of the fastest cycling tires around really held my attention, much like one of those old Monty Python sketches.

It’s a handmade (think FMB), cotton (think Specialized Turbo Cotton) tire made in Italy (think quality). It has a built-in puncture belt yet is still as light as the best belt-less race day tires from Vittoria, Schwalbe, and Pirelli and scores nearly 2x as well as those and the Continental Grand Prix 5000 S TR in BRR’s puncture resistance tests.

Add to that, the Veloflex Corsa Race TLR’s price is less than any of the other tires in this review, and its tire loss rolling resistance scores are on par with the Specialized S-Works Turbo RapidAir and Michelin Power Road TLR.

That’s a whole lot of goodies I’ve never seen packed into one tire before.

If you’re in it to win it, the 25mm Corsa Race TLR measures narrower with room to spare mounted at 80psi on rims as narrow as the Campagnolo Bora Ultra WTO 60 (26.3mm outside rim width) to as wide as the Bontrager Aeolus RSL 62 (30.9mm).

For those of us looking for wider tires, the Corsa Race TLR only comes in a 25mm size. When I asked Veloflex if they had any plans to introduce a 28mm wide version, they responded that they didn’t for now as “the yarn used to produce the 350 TPI casing is really thin and wouldn’t be in the safety parameter for the high pressure exerted on the area of a 28mm section.”

OK then. But 350 TPI casing? More to throw on the goodie pile.

Being a cotton tire, it goes on and off of rims with keyboard roughened hands (i.e. “soft” like mine) but takes a liberal amount of sealant (2 oz) to get it airtight the first time and probably needs to be regularly refilled to keep it inflated. You could always run it with a latex tube if you don’t like to keep up with more frequent sealant checks.

How does it feel on the road? Pretty freakin’ amazing. As a cotton tire and regardless of the fact that it has a puncture layer, I was a bit careful with it the first couple of rides out, concerned that it would be too sensitive for my rough handling on worn roads.

Yet, it was sensitive in a very supportive way, sharing more feedback from the road than most other tires I’ve ridden. That feedback helped me in the cornering in the way a caring part would, letting me know when I could go harder and when I needed to ease off.

I soon stopped worrying about whether it would be as fragile as other cotton tires I’ve ridden like the Specialized Turbo Cotton clincher and enjoyed the added comfort that came from such a supple tire.

IFor how well it performs and how relatively little it costs, the Veloflex Corsa Race TLR is a great tire. Even if it wears sooner than others, something I haven’t seen in our testing but I suspect will be the case from its cotton casing, I wouldn’t be dissuaded from riding it.

I just wish they could make it in 28mm and wider sizes.

Why some tires aren’t included in this review

I rated the Bontrager R3 Hard-Case Lite TLR among the best in prior updates of this review because it was one of the most aero, had a great road feel, and was clearly the easiest to install. Since then, others like the Continental Grand Prix 5000 S TR measures just as aero and goes on as easily yet has far better tire loss rolling resistance scores.

The Zipp Tangente Speed Road Tubeless tire was a + performer on every one of the criteria that matter most. Unfortunately, Zipp stopped selling the tire when Covid hit likely due to production issues at their supplier. No word on if they plan to bring it or something like it back.

A favorite of many, I included the Continental Grand Prix 5000 TL and rated it well in past updates for it road feel and tire loss rolling resistance despite its installation challenges on some rims. It’s been replaced by the Grand Prix 5000 S TR I reviewed above.

Hutchinson’s Fusion 5 Performance 11 Storm is a light, easy to install, and low-priced tire that I’d included in earlier editions of this review. As other tires have gotten better in the areas that matter most, the Hutchinson no longer competes well on anything other than price.

I’ve tested the ENVE SES Road Tire and included it in the previous update of this review. Regardless of its other performance properties, none of which stand out, I just can’t get past how hard it is to get on and off every rim I’ve tested it with including ENVE ones so have taken it out of this latest update.

Installation challenges also caused me to drop the Vittoria Corsa G+ 2.0 and Maxxis Padrone TR from earlier editions of this review.

While you still need a compressor or floor pump with a high-pressure cylinder like the Joe Blow to get some tires to inflate, you shouldn’t have to engage in hand-to-tire combat to get any tubeless tire on and off a rim these days.

I’ve looked closely at adding other everyday tires with puncture belts that get reviewed in industry publications including the Pirelli Zero Race TLR, Goodyear Eagle F1, and Challenge Strada Pro HTLR. The tire loss rolling resistance of these falls a step or so below the tires that I have included at the 60 to 80 psi pressure range that’s right for most of us.

And then there are a handful of thin, puncture-belt free tubeless tires that have tire loss rolling resistance so low that some enthusiasts may be tempted to ride them if only in races. I’m talking about tires like the Vittoria Corsa Speed G+ 2.0 and Schwalbe Pro One TT TLE.

I’ve not tested them and I don’t race. My fellow tester Miles, who wins a lot in Pro/1/2 regional races and is very competitive in Masters Nationals age group races every year won’t use them. Unless you’ve got a support car following you, it just doesn’t make sense. You flat and your race is over.

The Continental Grand Prix S TR and Schwalbe Pro One TLE that are included in this review are close enough in their tire loss rolling resistance ratings that you may not notice the difference to these top-rated, belt-free tubeless tires. You should be able to regain those watts and then some with more time in your position or by dialing in any number of other incremental gains (inflation pressure, chain lube, better fitting kit, etc.)

* * * * *

Thank you for reading. Please let me know what you think of anything I’ve written or ask any questions you might have in the comment section below.

If you’ve benefited from reading this review and want to keep new ones coming, buy your gear and kit after clicking the store links in this review and others across the site. When you do, we may earn an affiliate commission that will help me cover the expenses to create and publish more ad-free, subscription-free, and reader-supported reviews that are independent, comprehensive, and comparative.

If you prefer to buy at other stores, you can still support the site by contributing here or by buying anything through these links to eBay and Amazon.

You can use the popup form or the one at the bottom of the sidebar to get notified when new posts come out. To see what gear and kit we’re testing or have just reviewed, follow us by clicking on the links below or the icons at the top of the page to go to our Facebook, Twitter, Instagram, and RSS pages.

Thanks and enjoy your rides safely! Cheers, Steve

Follow us on facebook.com/itkcycling | twitter.com/ITKCycling | instagram.com/itkcycling

First published on August 9, 2020. Date of the most recent major update is shown at the top of the post.

170 comments

  • Steve
    Great review as always, thank you. I didn’t see the Zipps reviewed and I recalled that you had ranked them high previously. Do they no longer make a tubeless tire?

    • Steve, Thanks for the kind feedback. Yes, Zipp stopped selling tubeless road tires. Steve

      • Steve – Do you have the width data from the Zips on the ENVE AR still? Wondering how wide it actually is and I don’t have fancy calipers like you. Thanks!

      • Hi Steve, which tire do you recommend for the new Zipp 353 NSW’s? I’m more interested in climbing so perhaps rolling resistance is more important to me.

        • Jay, if you care principally about rolling resistance in your tire selection, the Spech and Schwalbe tires reviewed above have the lowest rolling resistance of the tires we’ve tested that are also compatible with hookless rims. There’s a new Conti tire released that is designed for hookless rims and shows slightly lower rolling resistance than the Spech and Schwalbe in one independent test I’ve seen but I’ve not road tested it as yet. I’m planning to ride and review that tire in the early spring. Steve

  • Hi Steve, first time caller here.

    Interesting findings, I like that you use data instead of “they roll good” type of thing.

    The biggest question I have is with this statement:

    “On a typically longer competitive group ride, distance event or road race, you’re talking about riding at a 5-15 watt higher power level for several hours to keep up with the pack and avoid losing minutes depending how much time your are riding into the wind vs. tucked away in the draft of a paceline.”

    Would you have any data about the impact of drafting and Rule 105? I know in a road race or typical A ride, there is minimal time taking pulls if there is a peloton over 20 strong. And if you are following wheels, what’s the difference?

    In so many real-world situations, wider is better. 25s are not suitable for most events now, or at least not advisable. Most races are now mixed surface, and the rest have a lot of bad surface. Also most races are climbing competitions where you are not exceeding 18mph. And when you are descending, well, you gain or lose time due to technical skills rather than aerodynamics.

    Then, with punctures, you will have much easier time plugging a 28-32, while plugging a 25 would carry probably 80% failure risk. And plugs are the thing that will make you get through a race much faster.

    Lastly, I’ve been mounting tubeless before there was tubeless, and GPs go on as good as any other tire. The toughest tires to mount are open tubulars like Challenge Bianca Strada (straps needed). The better test is whether you can inflate them without a compressor, which most people don’t have. GPs can be inflated with a floor pump.

    So my concern is if the conclusions here are steering people back to 25s, and downgrading quality tires like GP5Ks due to difficulty of installationb, his might or might not be the most complete set of data points.

    • Ilya,

      Riding in a draft is obviously the best thing you can do to reduce aero drag (estimated 30% reduction) and would matter far more than any aero benefits from a 105% rim-tire ratio and probably as much as some combination of aero equipment like an aero bike, aero bars, aero road helmet, 105 rim-tire combo. Then again, racers and A group riders use all those things and still shave their legs and don’t ride in an endurance position during races and group rides even though they ride in pacelines. In my two-part series, I put power and time savings numbers on the various ways to ride faster on your bike.

      So why bother with any aero approach if you are doing an A group ride or road race? It’s for the times when you aren’t tucked into a paceline – you are in the wind, breaking away, trying to get back, there are small separations in the group, or the wind is coming from yaw angles that the paceline isn’t blocking.

      If you want to give up the aero benefit from having 40-65mm deep wheels by mounting tires wider than your rims, then yes, go with wider tires. Assuming you run lower pressures on your wider tires, you are also likely to add to your tire’s rolling resistance though can save yourself some energy by reducing the losses from vibrations (impedance losses) by inflating the wider tires 5-10 psi lower than narrower ones.

      Clearly, some of us ride on worse surfaces than others but I don’t know if I’d agree with your characterization that most races are on mixed surfaces (that term usually means paved and unpaved), bad surfaces, and are climbing competitions. I’m not active in the road racing scene but those I know who are don’t race on mixed surfaces unless they are called out as such and organizers try to avoid holding races on bad roads. Every club is different but I’d expect most ride callers also try to avoid leading group rides on bad roads if they can avoid it by modifying the route the group takes. Fast rides on bad roads – be they races or group rides – can create safety issues that everyone wants to avoid.

      There are certainly plenty of races where the selection is made on climbs but probably just as many if not more that aren’t. But, like any race or ride, you can choose different depth wheels or other gear to go along with tactics specific to the route profile, your skills, and team. And I’d think aero is especially important in the growing crit racing world.

      I don’t know why a puncture would be easier to fix on a wider tire than a narrower one. I’d think it’s more a function of how bad the puncture is than the width of the tire.

      As to mounting and inflating tires, I can only report my experience from mounting all the tires I’ve reviewed here on the range of rims I’ve installed them on. I’d love for the Conti GP5KTL to install easier than I’ve found it does. It has a great road feel and the lowest rolling resistance.

      And I’m not trying to steer readers to 25c tires. Instead, I’m pointing out the best aero solution. While my charts show 28c tires are a good aero solution for some rim-tire combinations, they aren’t currently for most. Steve

  • After my first year of road bike ownership, I was looking to improve the stock aluminum Affinity wheels on my Trek Domane SL5. I worked down to a list of 3 potential wheels (thanks to what I learned from your site). My final decision was made by the fact that the LBS had one of them in stock and there was an unknown wait for the other 2. So, I got the Bontrager Aeolus Pro 3V wheels and then had to find better tires.
    The LBS shop encouraged me to try out tubeless. They attempted the Challenge Strada TLRs in 30c. They succeeded in mounting one and it held pressure well. But they called me and informed me it was the hardest install they’d ever performed and I’d likely not be able to mount them myself at home and it would be impossible on the side of the road. So they recommended the Bontrager R3 Hard-Case Lite TLR.
    My choices were 32c and 28c. Not having read your article, I knew nothing of the rule of 105/108 (the 32c tire is about 2.5mm wider than the rim at 70psi). I thought the 32c would be better because it would better protect my new wheels on the pothole filled local roads. They found them easy to mount, but it did take double the sealant to get them to hold pressure well (sort of like those Michelins).
    Now that I’ve rode them about 100 miles on 3 rides, I’m not really impressed. With new rims and tires, it’s hard for this novice to accurately say what characteristics are the wheels and what are the tires. I think everything that feels better (climbing, stiffness, responsiveness) seems like it’s more related to the wheels. But when I’m trying to cruise along on the flats at 18mph+, I feel like I’m putting the same effort in as I did on my old wheels. Unfortunately I don’t have a power meter, so I don’t really know.
    The tires suppleness, grip, rolling resistance, and control feel like they are only on par with my old tires. FYI, I had Affinity TLR wheels with Specialized Espoir Sport Reflect 30c tires that I took off my Specialized Sirrus Elite Alloy (the R1 tires that came with the SL5 suffered several punctures and then a sidewall blowout within the 1st month of ownership). I’m 6 feet and about 210 lbs. and far from aero with all of my body hair and wide shoulders.
    So, would you recommend trying the 28c R3 tires before I start looking elsewhere? I wasn’t unhappy with my old tires, so my problems with the new ones is really that I expected an obvious improvement from a tire that should be an improvement. Am I too inexperienced, heavy, non-aero, etc. to discern the differences? I’ve got a handful of 9th and 10th place leaderboard spots on some well-travelled local strava segments and I usually average between 17-18mph on my usual 30+ mile rides with a handful of short climbs and lots of intersections. So, I’m not fast, but not slow either.

    • Hey Big Doug, Welcome to the world of cycling and the second-guessing that comes with it. A couple of things. 17-18 mph isn’t a speed that you’ll notice an aero difference from your tires and wheels and the Pro 3V isn’t deep enough to provide aero benefit. So forget about the Rule of 105. You’re on a good set of wheels and tires and that should provide you some added confidence out on the road. Neither will slow you down or hold you back.

      There are many, many things beyond wheel and tires that you can control to affect your speed and the best ones don’t cost anything except time and effort. I’d suggest reading through my two articles on the subject and start working on the list starting with this one. It may take a few years to get through them but that’s the normal progression of a cycling enthusiast. Welcome to the club! Steve

      • Ok, thanks for the note on aero. If I had aero wheels, what is the speed that I would notice aero? On the flats, without a headwind, I’m usually going closer to 19-20mph (it’s all those intersections and a few steep hills that really drop my avg). I thought these new wheels with these new tires would feel faster on the flats, but I’m really only noticing the improvement on the climbs (it’s a significant improvement though).

        Thanks for the link. I’ve worked on a few of these things already and made my biggest strides with my pedaling and cadence. But I never thought about some of your points. I’ve got a lot of work a head of me because I really enjoy getting faster. And I think my next significant purchase needs to be a power meter and a bike fit. The LBS wasn’t doing bike fits because of COVID when I got my bike. But the fitter did give me advice regularly when I’d stop in and share my problems with him (which were many being older with destroyed knees and ankles). My DIY bike fit and changes yielded huge positive results, but it’s probably time to get the real thing now that they’re doing it again.

        FYI, I did 3,300 miles on the road last year during COVID. Which was more than double what I did on my flat-bar hybrid the year before. Kept me sane through the worst of it. And I’ve lost over 60 lbs. since I began cycling 3 seasons ago. If I can avoid getting hit by a car, lol, cycling will certainly be the best change in my health I’ve made in my entire life. Thanks again for all the great info!

        • Big Doug, Sounds like you’re really progressing well. It’s a process and sounds like you’re getting great results from it. 19-20 mph is about where you would start to benefit from aero tech. The second part of that review I sent to you gets more into that. Steve

  • Very insightful review Steve, thank you!

    Zipp say you must run a “labelled” tyre width of 28mm or greater with their new 303 Firecrest. Given your knowledge of how a tyres “labelled” width doesn’t necessarily mean the “measured” width will be the same, what’s your thoughts on running 27mm tyres (Enve SES) to get that magical 105% on these rims? Do you see a safety issue with a 27mm tyre not holding a strong bead seal with a hookless rim that has a inner and outer rim width of 25mm and 30mm, respectively.

    Thank you in advance!

  • Hi Steve, thanks for the in-depth and insightful overview. I’m just about ready for a new set of tires and was interested the in the 28c Bontrager R3 Hard-Case Lite TLR, but their min recommendation is 90psi, but the zip 303s calculator says I should run 62 psi rear and 57 on the front.

    Does this mean the bontragers are a no go in your view?

    Thanks

    • Ben, I’m pretty sure that’s a mistake on Bontrager’s part. That’s probably the max. No one would ride at a tubeless tire at that pressure. I’ll pull a 28c tire off of one of the wheelsets we’re testing later today and see what it says on the sidewall. Steve

  • Hi there, based on this article I went looking for a pair of Bontrager R3 Hard-Case Lite TLR‘s for my new ENVE SES 3.4 wheelset (excited!).
    However, I seem to be reading elsewhere that the only tubeless version of the R3’s is 32mm?
    Am I missing something?

    • Steve, see the link in the review of the tires above for the 25, 28 and 32mm size options. They might not be available online but should be at Trek/Bontrager bike shops. Steve.

      • Thanks Steve – the Bontragers were sold out everywhere near me, so I went with the Conty TLs. Thought I’d do the right thing and shopped local… which cost me $60 more for the pair in NYC. I’ll know to order from your store links next time! Thanks for such a great article (among others!)

  • Hi Steve, when it comes to the 105% rule, and outer rim width, is it the direct tyre to rim width edge dimensions that matters or the maximum outer width of the rim?

    As some of the more modern rim designs are now somewhat bulbous , i.e. dt swiss for example may be 23 or 25 at the narrowest but then increase the width to 28-30mm. Does that ‘help’ in maintaining the transient air flow or is the air lost at interface and do not reattach, even if the width of rim increases?

    I have seen a fee videos by Jean-Paul Ballard who leads aero research of Swiss side and DT Swiss where he recommends a 23mm tyre on their old ARC wheel and 25mm on their new wheels. However given the rim egde widths on either it appears both tyres would exceed the rim width at rim edge interface.

    Thanks

    • Eric, Good question. DT Swiss is actually one of the few major brands that still make the toroid-shaped rims you describe where the max width is more than a mm or two wider than the “brake track” or tire edge width. Most have gone to more of a U rim profile or a UV one where the max width is essentially the same width at the brake track edge and is narrower at the spoke edge.

      That said, the original Rule of 105 came about during a time when Zipp and others were making toroid-shaped rims such as the original Zipp 404 Firecrest and HED wheels that were the most aero back then. But in articles and forum posts I’ve read from Poertner about this, he hints at using both the brake track width (which wasn’t parallel – so wider further from the tire edge than closer to it) and the max width for the rule but doesn’t make a definitive statement about it. My tables in this post used to show the max and brake track edge to tire percentages when those rim widths were different but so few are now that I stopped complicating the chart further by dropping that measure.

      I’m certainly not an aerodynamicist but the theory behind reattaching air flow suggests to me that the sooner it happens and the longer you can hold it, the better. This would suggest getting the flow to reattach at the narrowest point. Mavic used to employ a tire flap that would cover the junction between the tire and the rim edge to improve aerodynamics but the UCI outlawed it. Then again, Zipp claims its dimples create mini vortexes that help the air stay attached.

      Needless to say, there’s a lot of proprietary testing and ballsy marketing that go with all of this aero stuff. The Rule of 105 or at least the design concept that the rim should be narrower than the tire does seem to have been adopted by most and continues to guide design some 10 years after it was articulated.

      While the tests I’ve seen show that a narrower tire is almost always going to be more aero, most wheelmakers who talk about it say they have designed their current rims using a 25mm tire these days and recommend you use that width for best aero performance.

      Setting apart that a “25mm” tire can measure anything but 25mm wide depending on who made it, what rim it’s on, what pressure it’s inflated to, and how many miles or km it has been used for, the biggest challenge these days is getting enthusiasts to ride tires narrower than 28mm that so many mistakenly think they need to be comfortable. As the charts show, you really need a 30mm wide external rim width to abide the Rule of 105 with a 28mm. And until the last generation or two of rim designs and the most recent generation of tubeless tires, most wheels violated the rule even with 25mm tires.

      DT’s ARC 1100 62 and 80 rim brake rims are still rather “old school” in their toroid design and 17mm inside width with 27mm and 28mm external max width respectively. So, yeah, a 23mm tire is probably going to be the most aero on even those current wheels. The disc brake versions of those wheels have 20mm inside width with a 27mm wide external max width on the 62 and a 32mm external max width on the 80. Per the other wheels of similar rim dimensions I’ve measured, a 25mm tire is not likely to follow the Rule of 105 on the 62 but I’d defer to Ballard as he’s done the aero testing. Steve

  • Hi Steve,

    I haven’t seen a review on the Pirelli’s P Zero Race tires on your site. Only info I found here is that they have higher rolling resistance than the best of road tires in that regard.
    Did you have a chance to try them out? I’ve just bought them (waiting still), but have no experience with them so far.

  • Hey Steve….. do you expect to review the new Continental GP 5000 S TR’s? I’ve used conti’s for years and am especially interested in what the actual mounted width’s turn out to be.

  • I have a pair of Specialized Turbo Rapid Air 26mm mounted on a set of Zipp 303S. I mounted them myself because I wanted to see how hard they were to put on. To Zipp’s credit the rims came taped with valve stem mounted, very easy compared to mountain bike tubeless.
    After two months the rear tire had minor hole that sealant wasn’t sealing, despite having plenty of sealant in tire, occurred on group ride. Happily I was able to dismount tire easily and install tube and put tire back on using my hands, sealant was messy but repaired in very little time.
    The problem I see with tubeless road tires are unlike mountain or CX tires you are dealing with very thin rubber, especially when tire has some wear on them. As long as you remember to break both sides of bead on tires, and if tires mount back up without using tire iron I’m fine with tube replacement.

  • Hey Steve – just purchased a set of the ENVE Foundation 45’s and am now having to switch from the Continental GP5000 TL’s I’ve used and been very happy with for the past couple of years.

    I know you point to both the Bontrager and Schwalbe as being supported (and I’ve definitely checked out ENVE’s compatibility chart for other options), but I’m wondering if you have a specific suggestion on the best alternative to the Continental’s I’ve loved for these new hoops? Would love to get as close as possible to what I know and love tyre wise.

    • Brandon, Conti announced the hookless compatible GP 5000 S TR a month or so ago. I haven’t tested them as they aren’t in stock yet but probably should be in the next couple of months. I’ve got them on backorder and will review them once they come in. Not sure exactly what you love about the 5000 TL but my Tubeless Tire Ratings comparative chart shows the performance characteristics of other tires that are closest to them. Steve

      • Hi Steve – thanks for the reply and will be eagerly awaiting their release. I’ve just had tremendous luck with punctures/flats and find the rolling resistance to be incredible on the 5000’s. I’m looking at the Specialized S-Works Turbo RapidAir to mount on the ENVE Foundation 45’s based on your article – does this seem like a reasonable choice?

        • Brandon, yes, that’s a very good choice too. Great road feel and rolling resistance within a couple watts of the Conti. A bit of a challenge to put on your rims but no different than the GP 5000 TL in that regard. Go with the 28C for best overall performance. Puncture resilience shouldn’t be an issue for most normal size holes if you make sure to put and keep enough sealant in the tire (30-45 ml or 1 to 1.5 oz). You can pick them up (and support what we do here at the site) at these links to Competitive Cyclist, Mike’s Bikes or Tredz (UK/EU). There’s also deals on purchases at Competitive Cyclist and Tredz that you can see on my home page. Enjoy, Steve

    • I picked up a set of the ENVE 65s a little while back and was lucky enough to score a set of the Conti S TR from Condor Cycle in October when they just came out. I know ENVE hasn’t specifically approved them on their webpage, but being hookless compatible is enough confirmation for me. I had to sit on the 65s for a little bit before I got the Contis, but last I checked there are supply shortages for basically all hookless compatible tires, so getting in line and waiting for the S TR might be the way to go if you really liked the TL. Condor is out of stock right now, but shipping was free and delivery time was pretty good for international.

    • Actually, Condor has the S TR in 25mm in stock now, in both black and transparent side wall.

      • Thanks Kevin – I pulled the trigger on the Specialized Turbo RapidAir as they would arrive today and get me out on the new hoops this weekend. That said, I ordered the S TR as well so I can get a feel for both! Appreciate the pointer!

        • Steve and Kevin – my LBS had the 5000 S TR in 25mm in stock when I went in to mount the ENVE’s so I decided to put those on for my first ride today.

          Have to say I’m thrilled. They ran super fast, and I didn’t find the wheels to have much of a comfort penalty (even moving down from the 28mm Conti’s I was running on my old hoops). Will definitely test out the RapidAir 26mm at some point as well and share feedback. Overall though, incredibly pleased with the setup after the 1st test ride.

          Thanks for the detailed content here, was invaluable in making some of these decisions (including the ENVE 45’s)

          • Brandon, You’re welcome. Thanks for the compliment. Glad things are working out so well. If you want to help keep the site going and get better at providing that “invaluable” content, here are 10 ways to support the site, 9 of which won’t cost you anything. Cheers, Steve

          • Brandon, great job on finding the Contis at a local bike shop, and getting them before the start of Winter. I was thinking they wouldn’t be available until December or January at the earliest. Get those rides in while there’s still daylight and warmth!

            Steve, thanks for the very informative reviews and advice on the site. Although I still probably spend way too much time contemplating various purchases and upgrades, I definitely feel much more confident when deciding to pull the trigger based upon your assessments.

  • Looking for suggestions on comfortable tubeless tires that don’t sacrifice much (/any) aero performance with the latest generation Zipp 454 NSW wheels. Any suggestions? Currently thinking Schwalbe Pro 1 TLE in 28c, but curious if there are others you’d suggest instead. Would the Bontrager R3s be better? The new GP5000s are now apparently hookless compatible – any experience with them yet? Are they still a nightmare to get on? In case it helps, they’ll be on an S Works Tarmac SL7.

    • Dave, We rode the Schwalbe Pro One TLE (25C on front, 28C on back) successfully on the 454 NSW this season. That tire is sufficiently aero on front wheel and has lower rolling resistance than R3. Expect to have new GP5K S TR delivered off backorder and installed, sized on a range of wheels including 454 during Dec. Many/most of the tires I rate highly are hard to find now so not a lot of good choices currently. A lot more discussion of tires for these wheels in the comments at the bottom of my 454 NSW review here. Steve

      • Thanks, somehow I’d missed that whole discussion when reading the 454 NSW review! One last question regarding the 28s — would you expect the aero benefits to be significantly reduced if I ran it up front as well? I’m able to find both the Schwalbe and R3s in stock locally, but the GP5k S TR are still just a myth (and my biketiresdirect backorder keeps being pushed further and further into the future…). I like the idea of running 28 for the comfort, but wonder at what cost to my efficiency…if it’s negligible I’d rather have the extra volume; if it’s large maybe I should reconsider.

    • Dave, compared to the 5000 TL, the 5000 S TR is notably easier to mount. I did break a relatively cheap tire lever, as well as a couple fingernails, trying to get the 5000 TL on a set of HED Ardennes Plus (from what I hear a notoriously bad combo). The night spent trying to mount them may be my most painful biking experience. Getting the 5000 S TR on a set of EVNE Foundation 65s (again, from what I hear is a bad combination) wasn’t easy but the war of attrition against the tire was much shorter.

  • Hi Steve-

    Do you have a specific sealant you recommend for tubeless tires? I have been using Stan’s no tube sealant and find that I lose quite a bit of tire pressure before it seals.

    Thanks
    Biren

    • Biren, I use Stan’s as well. In my experience, how well a tire initially seals has more to do with the tire and installation process than the sealant. Take a look at the videos showing tire sealing techniques for some tips on how best to do it. Steve

      • Thanks Steve. The tires were installed by REI and their bike techs are usually pretty good, so I doubt that’s the reason. I only add sealant every 6 months so maybe that’s an issue? I am running schwalbe one pros on the wheels right now. No idea if they do well or not seating either. I love the tube version of the GP5000 but sadly their tubeless isn’t compatible with the ENVE 4,5AR

        Biren

        • Hi Biren, I’ve had the same problem with multiple tires, including the schwalbe pro one tle, on my 4.5AR wheels. I’ll seat a new tire, fill it with sealant and all seems good. Then a few hours later I find the tire has deflated completely.
          I happen to use orange seal, but from my experience, the problem is usually because of tiny gaps where the tire bead locks onto the rim. Maybe due to slight imperfections in the wheel or tire? I usually don’t see any sealant or hear any air escaping. My solution is to take extra time when spinning the wheel and distributing the sealant. Hold the wheel horizontally, then spin and tilt the wheel around to make sure the sealant can get into all those gaps. Flip it over and do the same for the other side of the wheel.
          And definitely check your sealant more frequently than every 6 months 🙂
          -Kyle

  • Hard to believe the review of the Conti 5000 with a Bontrager Aerolus XXX rim. That is what I have been running on my Madone SLR (with Orange Seal)

    Never an issue mounting or pumping up. The 4000 was harder to mount, but I find reasonable to work with as long as I make sure the bead stays in the center channel.

    I just replace a tire last week, no issues, used my Joe Blow to inflate; don’t need a compressor. No clue how you can say it failed or not compatible.

    • Ron, what I reported was my experience with the 25mm Conti GP 5000 TL on that rim. It was just so tight that I couldn’t get it on the rim. Your reference to the GP 4000 which is/was not a tubeless tire and mention of replacing the tire (the TL is out of production but still available at some stores) makes me wonder if we are talking about the same tire – the GP 5000 TL or the tubed clincher which goes by the GP 5000 designation that you put in your comment. Also, do you have the tubeless rim strip installed or did you tape it? The rim strip which I used makes the center channel not as deep. I tape all the Bontrager rims when I set them up tubeless now principally to reduce the weight but that’d probably make them easier to install tubeless tires on as well.

      Anyway, the new tubeless GP 5000S TR that replaces the GP 5000 TL is supposed to be easier to mount. I’ll be updating this review and include tire soon. Steve

      • Hi,

        I was using older GP tubeless maybe it wasn’t a 4000, it was a different sub version of the 5000. I got the Madone SLR Sept 2018. Been running Conti tubeless since day 1. as I said my 1st set of Conti tubeless tires in 2018 where a lot tighter. The more recent Conti’s are very workable if you are careful about keeping the bead in the center channel

      • Sorry I didn’t fully answer you.

        I used the Bontrager rim strip made for the Aerolus wheels, not tape, it is one piece.

        Tires have always been Conti, I only run a tubeless tire on a rim designed for tubeless. I do not believe converting tube to tubeless is a good idea.

        I might have the models wrong. I know I am running the 5000 TL now, not the very newest model that just came out.

        I find the 5000 TL on the Aerolus rim a very workable combination

  • Hard to believe the review of the Conti 5000 with a Bontrager Aerolus XXX rim. That is what I have been running on my Madone SLR (with Orange Seal)

    Never an issue mounting or pumping up. The 4000 was harder to mount, but I find reasonable to work with as long as I make absolutely sure the bead stays in the center channel throughout the entire process.

    I just replace a tire last week, no issues, used my Joe Blow to inflate; don’t need a compressor. No clue how you can say it failed or not compatible.

  • Steve – great article, as always. I was curious, in your discussion with tire manufacturers, have you come across a 25c tire that is compatible with a 23mm internal rim? It sure seems like flying needlessly close to the sun, but we have two of the biggest wheel makers now going down this route with their flagship aero wheels (Zipp and bontrager). Odd times…

    • Kevin, Bontrager says 25mm tires are “aero-optimized” and compatible with their 23mm inside width hooked rims on their RSL 51, 62, and 75 wheels. Unless you are going 25mph/40kph or faster on smooth road surfaces, I still think you are better off on 28mm tires with their wheels. The 28mm tires I measured for this review are still plenty aero (rim wider than the measured tire width) and will give you less vibration loss rolling resistance (and better road feel – comfort, handling, grip) than the 25mm.

      Zipp says 25mm tires are not compatible with their 23mm internal hookless rims on the 454 and 404 wheels. Their view is that the watts of aero losses from using a 28mm tire are more than made up by the watts of gains from reducing your vibration loss rolling resistance. Before I learned (or they said) that, we had been using 25mm Schwalbe Pro One TLE on their 454 and 404 wheels last year and Miles did very well racing the 454 with that setup. We’ll be testing the new 28mm Conti GP5000 S TR tires on those wheels shortly.

      Recognize also that both the Schwalbe Pro One TLE and Conti GP5000 S TR tires measure narrower than the prior model of their tubeless tires (Pro One and TL). In other words, the labeled 28s now measure about what prior labeled 25s model used to. So riding the labeled 28s now is not too different from an aero standpoint to what riding the labeled 25s used to be.

      Steve

      • Hi Steve, thank you for great review as always. I understood that some 25mm tyres are recommended by SRAM/Zipp for use with their 23mm rims? The link below seems to show that both the Schwalbe and Veloflex 25mm tyres are compatible.

        https://www.sram.com/en/zipp/campaigns/hookless-tire-compatibility

        • I actually had done the measurements for the Schwalbe 25mm and Zipp 23mm rim combination and just added it in an updated rim-tire width chart above. I hadn’t measured the Veloflex but expect it would measure very similar to the width on the Bontrager 23mm rim.

          Note that Zipp doesn’t test for compatibility and doesn’t recommend whether any tires are compatible with their rims. Their chart merely shows the rim-tire combinations that the tire companies have told them are compatible. ENVE does test tires submitted to them for compatibility with their wheels and lists the ones that did and didn’t pass their tests. Steve

      • Hi Steve,

        I have to say amazing content and analysis digging into the nitty gritty on all of these great topics. Absolutely love it.

        A follow up on the GP5000s TR measuring the same size as the old TL’ on most rims. I noticed in your measures you had a set of the 25mm TRs on the RSL 62 rims which have an internal width of more than 21mm but hooked, is that because Bontrager specifically approves them?

        I have a set of rims that are hooked, 24.2mm at the hook, 28.8mm at the brake track (although they’re disk) and 30.2mm at their widest. I’ve been using a set of old TL’s 25 front and 28 rear (areo in the front, party in the pack) with great success. I am riding close to 38kph and enjoy the smooth surfaces for the most part) I need to get a bloody caliper to see what these measure up to.

        When the GP5000s TR was released there was a lot of content around the 25mm just wouldn’t work on a rim with more than 21mm inner. But then saw the RSL measures and the comment above, and a little uncertain now whether to stick with the 25mm up front or just go to a 28 front and rear now and just bloody ride.

        Appreciate the wisdom.

        • Canuck, Thanks for your kind feedback. Just trying to figure it all out just like you and the rest of us roadies.

          Bontrager hasn’t opined on the S TR with their 23mm internal width rims. They do recommend a 25mm size tire as aero optimized with those rims. If you are on 24mm internal rims and given the narrower overall width of the S TR vs the TL at the same “size”, I’d probably go with the 28mm on the front. You could put a 25mm S TR on the front and look at the shape of the tire. I’m guessing it’s probably going to be very stretched out and might not handle as well. Steve

  • I’m surprised to see the Bontrager tire is off the list here, I finally tracked down a pair of 28mm and have been very pleased with them so far. I haven’t really noticed the extra rolling resistance although the Enve 4.5 ARs are probably making it much less apparent. For me the most impressive attribute has been the puncture resistance, this past New England winter has made for some horrible road conditions and so far I’ve only gotten one tiny cut (no puncture) on the rear tire after a few hundred miles. I suppose my priorities have shifted slightly after wasting so much money on tires that can’t survive 100 miles without flatting (S-Works), I really wish Continental would make a version of the GP5000 with a thicker tread or Vectran breaker. I would gladly give up a couple of watts for better durability and I’d imagine they would still feel pretty nice out on the road. I’m sure the new tire will feel incredible and perform brilliantly but I can’t bring myself to spend that kind of money on a tire that most likely will not last me 500 miles. I’ll probably try them at some point but not until the prices drop considerably. I was going to ask why you didn’t test the Veloflex Evos since they are available in 28mm but looking at the rolling resistance numbers online I can see why.

  • Steve:

    +1 to all of your conclusions/recommendations with which I have experience (except for one…read on). Since switching from Roval CLX’s to 3.4AR’s a year ago I moved on from the 28c tubeless versions of the Conti GP5k (good but a bear to mount/seat/inflate), Hutch Fusion5 (good value but that’s it), the older ProOne’s (harsh ride quality) and Vittoria Corsa’s (a PITA to get them to hold air).

    Since then I’ve had the newer ProOne TLE’s (on the AR’s they feel fast, secure & smooth…more “solid-feeling” than harsh and will seat/inflate w/ a floor pump!), Enve SES 29c which I only used in the rear (much harder to mount/seat/inflate than the ProOne’s but otherwise fine) and the Michelin Power Road TLR 28c (they mount up too wide @ 31mm and they punctured like crazy…crappiest tubeless tire I’ve ever owned in my 10yrs. of running road tubeless).

    The other day I needed a new tire fast (I didn’t know I could destroy two tires in one ride…), so I went to my LBS to splurge on the Spesh Turbo RapidAir 28c and I am in road tubeless tire (magic-carpet ride like the Vittoria Corsa which also makes them feel fast, great width for the AR’s @ 29.5mm–which is the same as the ProOne TLE’s for me, no drama mounting them and they seat/inflate w/ a few fast strokes of a floor pump…wow: am heading out to splurge on the 30c for the rear so hopefully they will wear well).

    Great recommendation on the Spesh Turbo RapidAir!

  • Thank you Steve for the response. The wheel manufacturers suggest a 25mm on the front to be aero but given the actual widths from your measures and discussion about the TL vs sTR sizing I suspect as you say it will be effectively the same width and shouldn’t be too detrimental to aero or handling (I have been blown away by how much more stable the bike is with 45mm rims and proper tire paring compared to the stock rims with the 32mm stock tires). I was thinking of switching to a 25mm Power Road Tubless but looks like it’ll measure close to the continental 28mm anyway.

    I am curious to see what the new Michelin Power Cups will bring, they sure have promised big things in the marketing material, perhaps they’ll be added to your top tires down the road.

    As I said before, massively kudos on the sites work, super insightful and brings a lens to this stuff that I haven’t really found on any other site.

  • Hi again Steve, I notice the tyre table with rim compatibility and 105 rule has been updated.

    I also noticed the Camapgnolo Ultra’s have made the list.

    Just as per your comment about sharing your work to date with is on the tyre assignment, please would you care
    to share some preview insights and/or feedback on the Ultra 45’s’?

    They are a ‘hot’ wheel in terms of desire and marketing even if narrow by modern standards.

  • Steve – Is your review of the Enve SES Road Tire still available? My last set of Zipp Tangente’s finally bit the dust and the only thing around town was the Enve 29’s.

    They went on my AR’s eventually (I only cried once) but wondering if I keep my eye out for when the Specialized or Continentals are available and swap them out

    Thanks!

    • Shawn, I explain at the end of this review why I no longer included the ENVE SES tires. You discovered the major reason. Tire loss rolling resistance is also high relative to those still in the review. Steve

      • Thanks Steve. I think I’ll keep searching for the Conti’s or Specializeds and then switch them out before my 70.3 in September.

  • Kerim Schellingen

    Any update on the veloflex tlr in real world use? Thx!

  • Ira Goldschmidt

    I’ve blissfully put 1,000 mi. on my Spesh Rapidair front tire since raving about ‘em in my above 3/28 post. Today I decided to swap it out for another tire I’ve wanted to try and found IT WAS ESSENTIALLY IMPOSSIBLE TO PUSH THE BEAD IN & OVER THE “BEAD LOCK” and into the center channel of my AR’s. Using the patience I’ve learned while tackling this challenge on my uber-wide MTB rims I slowly worked the 1st bead off. However this patience would not work on the 2nd bead because (it seems) the tire’s sidewall is so supple that my thumbs could not gain any “purchase” on the tire. When my thumbs started to cramp I grabbed a smooth-edged screwdriver (gasp) and finished the job without caring about damaging the tire or tape (which I didn’t but I was careful to make sure that the rim was unharmed!). Clearly this is not how this story should end and I’ve never had this problem with other tires on the AR’s.

    Any suggestions about how to push a belligerent bead in & over the beak lock and into the center channel? Maybe leave the tire inflated overnight to the ETRTO blow off pressure to stretch the beads out a skosh? HELP…THOUGHTS?

  • Just tried removing two other tubeless tires from my AR’s (a ProOne & P Zero Race) and, while their beads feel just as tight as the RapidAir’s, their stiffer sidewalls allow me to easily grab the tire and pull it over the bead lock. I then tried this approach with the RapidAir and, as with trying to push with my thumbs, I can’t hold onto the supple sidewalls/tread enough to be able to pull it over the bead lock either. Arggh…will leave it inflated to 70# overnight!

    • Ira Goldschmidt

      No improvement in getting my RapidAir to unseat from the AR’s bead locks after leaving the tire inflated to 70# overnight. I just watched two Youtube videos that both said “grip the tire in a vise” (yikes and I thought using a smooth-edged screwdriver was a stupid idea). Anyway one recommended applying “Red Rubber Grease” between the rim’s bead lock and sidewall before installing the tire (it supposedly keeps the bead lubed without hardening/swelling the rubber). That’s a UK product so I’m gonna try some version of “Brake Caliper Grease”…will see (who knew that my wish 10yrs. ago for a road tubeless rim that would keep a tire seated upon deflation would lead to this…damn the Pro’s for insisting that they won’t use road tubeless until the manufacturers could assure them that the tires wouldn’t come off the rim…and so it is!).

      • Ira, just catching up with your comments now after a long Saturday group ride. I don’t have any magic bullet answers for you but I’d suggest wrapping your palms over the tire and try to bring it over the bead lock with the force of your fingers pulling in as you make a fist. I find this distributes what strength you have over a wider area of the tire more than trying to push it with your thumbs. Failing that, I’d bring it to a mechanic who has stronger hands. Also bring some cash to give the mechanic. You may feel like a wimp in doing so but they’ll feel like a hero. I had to do this a couple times myself in the early days before I improved my technique and when tire and rim dimensions and tolerances weren’t what they are now. Steve

        I wouldn’t mess with the screwdriver as you could crack the carbon at some point. The grease sounds like a bad idea. a) it’s not going to work its way between the tire bead and bead lock at this point and b) you don’t want grease in the area where the tire is supposed to fit snug up against the rim.

  • This is great. I have horror stories of my own of bike shops not installing tubeless properly & tires literally peeling off during a race! So glad to see the improvements in installation and you marking the best of the best.

Leave a Reply

Your email address will not be published.